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We present a numerical study of fractional quantum Hall liquid at Landau-level filling factor �=2 /3 in a
microscopic model including long-range Coulomb interaction and edge confining potential based on the disk
geometry. We find that the ground state is accurately described by the particle-hole conjugate of a �=1 /3
Laughlin state. We also find that there are two counterpropagating edge modes, and the velocity of the
forward-propagating mode is larger than the backward-propagating mode. The velocities have opposite re-
sponses to the change in the background confinement potential. On the other hand changing the two-body
Coulomb potential has qualitatively the same effect on the velocities; for example, we find that increasing layer
thickness �which softens of the Coulomb interaction� reduces both the forward mode and the backward mode
velocities.
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I. INTRODUCTION

The fractional quantum Hall �FQH� effect is a remarkable
phenomenon observed in two-dimensional electron gases
�2DEGs� in a strong perpendicular magnetic field. FQH liq-
uids are gapped and believed to possess topological order.1

In particular, it has been established that the �=1 /3 Laughlin
state represents an Abelian topological phase. The excitations
in such a phase can carry a fraction of electron charge and
have fractional statistics which are in-between bosonic and
fermionic statistics. Various experiments have reported ob-
servation of fractional charge.2–4 Recently, a series of
experiments5,6 observed the so-called superperiods in the
conductance oscillations in an FQH quasiparticle interferom-
eter, which have been interpreted as a reflection of fractional
statistics.7,8 The bulk topological order is also reflected in the
corresponding edge excitations, which are gapless. For a
�=1 /3 FQH liquid, with a sharp confining potential �no edge
reconstruction�, there is only a single branch of bosonic ex-
citations at the edge. The bosonic edge mode is chiral, i.e.,
propagating along the edge in one direction �determined by
the E�B drift� only, because the magnetic field breaks the
time-reversal symmetry. The edge physics can be described
by the chiral Luttinger liquid theory and has been verified by
numerical tests in microscopic models.9,10

In a hierarchical state, the FQH liquid supports multiple
branches of edge excitations. Depending on the bulk topo-
logical order, the edge modes may propagate in the same
direction or in opposite directions. The simplest case with
counterpropagating edge modes is the spin-polarized FQH
liquid at filling fraction �=2 /3, which can be regarded as the
particle-hole conjugate of a �=1 /3 Laughlin state or, equiva-
lently, a hole Laughlin state embedded in a �=1 integer
quantum Hall �IQH� background �see Fig. 1 for an
illustration�.11–13 Roughly speaking, the inner and outer
edges are located at density changes of 2 /3→1 and 1→0,
respectively. In general, the two edge modes are coupled to

each other, and their properties may be dominated by disor-
der in the presence of random edge tunneling.14,15 The edge
physics of the �=2 /3 state is intriguing since one of the edge
modes propagates opposite to the classical skipping orbits
dictated by the uniform magnetic field, leading to a negative
contribution to thermal Hall conductivity.16 The counter-
propagating edge modes have since been studied17–21 both
theoretically and experimentally in recent years.

Recently, a similar but more delicate situation arises at
filling fraction �=5 /2, where the Moore-Read Pfaffian
state22 and its particle-hole conjugated state, dubbed the anti-
Pfaffian state,23,24 compete for the ground state. In the ab-
sence of Landau-level mixing, impurity, or edge confine-
ment, the particle-hole symmetry is unbroken. In this case
the two states, in the bulk, are expected to be degenerate in
the thermodynamic limit. But these two states have very dif-
ferent edge structures: the Pfaffian state supports two co-
propagating chiral edge modes �a charged bosonic mode and
a neutral fermionic mode�, while the anti-Pfaffian state sup-

FIG. 1. �Color online� Schematic picture of electron-density
profile along radial direction of a �=2 /3 FQH droplet. We assume
there is a hole Laughlin state embedded in the �=1 electron back-
ground. Therefore, there are two interfaces: one is between the 1/3
hole Laughlin state and the integral filling background and the other
is between the �=1 integer quantum Hall droplet and the vacuum.
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ports three counterpropagating charge and neutral modes.23,24

Their relation is somewhat similar to that between the �
=1 /3 and �=2 /3 edge states. We note that very recent
experiments25–27 found indications of quasiparticle excita-
tions with charge e /4 supported by both states, and, interest-
ingly, tunneling experiments26 seem to favor the anti-Pfaffian
state over the Pfaffian state. We also note that the particle-
hole conjugates of the Read-Rezayi state28 have been studied
theoretically, with emphasis on properties of their edge
excitations.29

Motivated by the recent work on the particle-hole conju-
gate of the Pfaffian state23,24 and Read-Rezayi states,29 as
well as by the experimental measurement of the I-V spectros-
copy between individual edge channels,30 we revisit the po-
larized �=2 /3 FQH state with a detailed numerical study on
the edge modes of the �=2 /3 FQH droplet using a semire-
alistic microscopic model. We find that the ground states of
the system for a wide parameter range are well described by
the composite of a �=1 IQH droplet and a �=1 /3 Laughlin
hole droplet. The number of electrons and holes in the two
droplets varies as the strength of confining potential varies,
under the constraint that the total number of electrons does
not change. Two counterpropagating edge modes are clearly
visible in our results. Quantitatively, we find the forward-
propagating outer-edge mode �arising from the IQH edge�
has a larger velocity than that of the backward-propagating
inner edge �from the hole FQH edge�. The structure of the
excitation spectrum of the inner edge is identical to that of
the Laughlin state at �=1 /3 except for direction of propaga-
tion. Increasing the edge confining potential increases the
outer-edge mode velocity and reduces the inner edge mode
velocity. We also carry out a particle-hole transformation of
the electronic Hamiltonian with hard-core interaction to gen-
erate the Hamiltonian that makes the hole Laughlin state and
hole edge states as its exact zero-energy ground states. Using
a mixed Hamiltonian which contains both the electron Cou-
lomb Hamiltonian and the conjugate Hamiltonian of the two-
body hard-core interaction, the bulk excitation energies can
be raised to allow for a clearer separation between bulk and
edge excitations. We find that our results are robust in the
presence of the electronic layer thickness, whose main effect
is softening the Coulomb interaction and reducing the veloci-
ties of both edge modes.

The rest of the paper is organized as follows. In Sec. II we
describe the microscopic model used in this work. We dis-
cuss the nature of the ground states in Sec. III. We present
the overlap study of the ground states with variational wave
functions in Sec. IV. A detailed analysis of the edge states
follows in Sec. V. One can find explicit construction of the
Hamiltonian for the variational wave functions of the ground
states and edge states in Sec. VI. We consider the effect of
electron layer thickness in Sec. VII and quasihole excitations
in Sec. VIII. Finally, some concluding remarks are offered in
Sec. IX.

II. MODEL

In recent years, we have developed a semirealistic micro-
scopic model for FQH liquids and have studied edge excita-

tions and instabilities, quasihole or quasiparticle excitations,
and edge tunneling in Laughlin and Moore-Read Pfaffian
phases.10,31–35 The advantage of the model is that, depending
on the parameters, the Laughlin phase and the Moore-Read
phase, as well as edge reconstructed states and quasihole or
quasiparticle states, emerge naturally as the global ground
state of the microscopic Hamiltonian without any explicit
assumptions, e.g., on the value of the ground-state angular
momentum. This way, we can study the stability of phases
and their competition. Another advantage of the model is that
we can analyze the edge excitations of the semirealistic sys-
tem and identify them in a one-to-one correspondence with
edge excitations of the corresponding edge theory �or con-
formal field theory�. In addition to confirming the bulk topo-
logical order, we can use the microscopic calculation to ex-
tract energetic quantities, such as edge velocities, which are
crucial for quantitative comparisons with experiments; for
example, in a recent study we used the edge mode velocities
extracted from our numerical study to estimate the quasipar-
ticle dephasing length at finite temperatures at �=5 /2.34 In
this paper, we apply our model and methods to the �=2 /3
FQH system.

In this model, we consider a 2DEG confined to a plane
with rotational symmetry. There is a neutralizing background
charge distributed uniformly on a parallel disk of radius R at
a distance d above the 2DEG �see Fig. 1 of Ref. 10 for an
illustration�. The total charge of the disk is Nee, where Ne is
the number of electrons confined to the plane and the radius
R or, equivalently, the density of the background charge is
determined by the filling fraction �. We consider �=Ne /N�

=2NelB
2 /R2, where lB is the magnetic length and N� is the

number of flux quanta enclosed in the disk. The distance d
parametrizes the strength of the electron confining potential
due to attraction from background charge, which becomes
weaker as d increases. We assume the electrons are spin
polarized, which is the case in strong magnetic fields. In the
second quantization language, the Hamiltonian is written as

HC =
1

2 �
�mi�

Vm1m2m3m4
cm1

+ cm2

+ cm4
cm3

+ �
m

Umcm
+ cm, �1�

where the Coulomb matrix elements V�mi�
are

V�mi�
=� d2r1� d2r2�m1

� �r�1��m2

� �r�2�
e2

�r12
�m3

�r�1��m4
�r�2� ,

�2�

and the background confining potential Um as a function of d
is

Um =
Nee

2

�R2�
� d2r�

��R

d2�
��m�r���2

��r� − �� �2 + d2
. �3�

Here 	 is the dielectric constant. We use the symmetric gauge

A� = �− By
2 , Bx

2 �; the single-particle wave function �m in the
lowest Landau level is

�m�z� = �2�2mm!�−1/2zme−�z�2/4. �4�

Throughout the paper, we use the magnetic length lB as
length unit and e2 /	lB as energy unit.
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It is often convenient to cast the Coulomb matrix ele-
ments into a weighted sum of pseudopotentials introduced by
Haldane.36 One of the advantages of expressing two-body
interactions in terms of pseudopotentials is that the Laughlin
states become exact ground states for specific pseudopoten-
tial Hamiltonians; for example, at filling fraction �=1 /3,
with hard-core interaction between electrons �in the pseudo-
potential language of Haldane,36 Vm=
1,m� and in the ab-
sence of confining potential, the Laughlin state37

�1/3�z1, . . . ,zN� = 	
i�j

N

�zi − zj�3exp
−
1

4�
i=1

N

�zi�2� �5�

is the exact ground state with zero energy, which exists in the
subspace of total angular momentum M =3Ne�Ne−1� /2, for
Ne electrons in at least Norb=3Ne−2 orbitals.

III. GROUND-STATE QUANTUM NUMBERS

To begin our study on the �=2 /3 system, we ask to what
extent we can conclude that the ground state of the semire-
alistic model can be described by the particle-hole conjugate
of the 1/3 Laughlin state on an IQH background. The sche-
matic profile of the electron density is shown in Fig. 1 in
which we neglect the density oscillation of the Laughlin state
for holes near its edge �see realistic curves in Fig. 4 for
details�. Suppose that the system contains Ne electrons filling
up to the NI=th orbital �with single-particle angular momen-
tum m=0,1 , . . . ,NI−1�. According to this picture, we have
two droplets: NI electrons fill the lowest Landau level �LLL�
and form a �I=1 IQH state; in addition, Nh= �NI−Ne� holes
form a �h=1 /3 hole Laughlin state. The total angular mo-
mentum for such a state is

M =
NI�NI − 1�

2
−

3�NI − Ne��NI − Ne − 1�
2

. �6�

To reveal such a state in a microscopic calculation, one needs
NorbNI orbitals. For example, with Ne=20 electrons filling
NI=26 orbitals, we have a six-hole Laughlin droplet �filling
the innermost 16 orbitals� and a �I=1 IQH droplet �filling all
26 orbitals�. The total angular momentum of the state is M
=280. We note that for the specific system the average filling
fraction is somewhat different from �=2 /3, due to the higher
density near the edge. If the hole-droplet picture is correct,
one can possibly �but not necessarily for energetic reasons�
find that the global ground state of the semirealistic model
has a total angular momentum M =280, if 20 electrons are
distributed in NorbNI=26 orbitals.

We study the global ground state of a system of 20 elec-
trons with various d and Norb �which serves as an additional
hard edge confinement�. We plot the results in Fig. 2. When
the distance of the background charge d increases, the con-
fining potential becomes weaker and the total angular mo-
mentum of the global ground state increases and goes
through steps at M =270, 280, 288, and 294. According to
Eq. �6�, these states correspond to Nh=5, 6, 7, and 8 holes,
respectively. Unlike the Laughlin or Moore-Read Pfaffian
cases where M is uniquely determined by the number of
electrons and a change in M is an indication of

instability,31,33 here we have a series of “good” ground states
since the number of electrons only fixes the difference be-
tween the IQHE droplet and the hole droplet. In other words,
the two edges can move simultaneously to respond to the
change in edge confining potential. In this paper, we will
focus on the six-hole state, although the results should be
general enough for other cases.

The agreement between the actual series of ground-state
angular momenta and the prediction of Eq. �6� suggests that
the picture of a Laughlin hole droplet embedded in an IQH
droplet is a good description of the ground states at �=2 /3.
In Secs. IV and V we will present more evidence that this is
indeed true for most cases. However, we would like to point
out an exception here. The quantum number M =294 is con-
sistent with an eight-hole state. But according to earlier dis-
cussion, we need Norb28 orbitals to accommodate this
state. The reader may have already noticed that it also ap-
pears in the Norb=27 case. This contradiction suggests that
there is another state �or phase� that is competing with the
hole-droplet picture. In fact, it even suppresses the seven-
hole state �M =288�. Analysis of the electron occupation
number suggests that this state is likely a stripe state. We can
use a fermionic occupation number configuration to repre-
sent the state as ��SP�= �011111100000011111111111111�,
where the string of 0’s and 1’s represents the occupation
number of the corresponding single-particle orbital �from the
left m=0,1 , . . . ,Norb−1�. The stripe state is more compact
than the eight-hole state and is expected to be energetically
more favorable for the restricted case with Norb=27. To con-
firm this and to quantify the trend from Norb=27 to 30, we
calculate the overlap between the ground state with M
=294 and ��SP� and find that the ground state indeed has a
large overlap ���SP ��M=294��2=25.4%� with a stripe state
when Norb=27 and d=1.2lB. This overlap decreases as we
increase the number of orbitals to 19.4% in 28 orbitals,
16.2% in 29 orbitals, and 8.2% in 30 orbitals, suggesting the
ground state for large enough Norb is not the stripe phase, but
possibly the eight-hole state. Note that for well-defined over-
lap, we need to add the proper number of 0’s to the right of
the occupation number configuration ��SP�.

FIG. 2. �Color online� Phase diagram for systems with 20 elec-
trons at filling factor �=2 /3, as a function of number of single-
electron orbitals Norb and background charge distance d. The
ground-state total angular momentum M changes as d increases.
Angular momenta M =270, 280, 288, and 294 correspond to five-,
six-, seven-, and eight-hole Laughlin ground states, respectively.
However the M =294 state with Norb=27 is expected to be
a stripe state which can be described by ��SP�
= �011111100000011111111111111�.
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IV. GROUND-STATE WAVE FUNCTIONS AND OVERLAPS

In this section we study the ground-state wave functions
at �=2 /3 and show that they are consistent with the picture
of a �h=1 /3 hole droplet on top of a �e=1 electron droplet.
For comparison between the two, we construct variational
wave functions for �=2 /3 ground states by particle-hole
conjugation of electron Laughlin states and calculate over-
laps between them. To be specific, we target the six-hole
ground state with M =280. We first fill the lowest 26 single-
particle LLL orbitals to obtain an IQH state, which can be
represented by a string of single-particle occupation numbers
�111. . .111�. Then, we construct a six-hole Laughlin wave
function in the following manner. A six-electron Laughlin
state, which is partially occupying the lowest 16 orbitals, can
be written as

�L16
6 � = 	

1�i�j�6
�zi − zj�3, �7�

where we have omitted a normalization constant and the
Gaussian factor exp�−�i�zi�2 /4�. We note that the Laughlin
state is a many-body wave function and can be written, sym-
bolically in the second quantization form, as

�L16
6 � = �

�in�
��in�ci1

+ ci2
+ ci3

+ ci4
+ ci5

+ ci6
+ �0�16, �8�

where

�0�16 = �000 . . . 000�16 �9�

is the vacuum in 16 orbitals. Therefore, the 6-hole droplet
embedded in 16 orbitals is

�L̄16
6 � = �

�in�
��in�ci1

ci2
ci3

ci4
ci5

ci6
�111 . . . 111�16, �10�

which contains 10 electrons. After adding the additional 10
filled orbitals, we have a many-body variational wave func-
tion for 20 electrons in 26 orbitals, which we denote as

�L̄16
6 �26

20= �L̄16
6 � � �1111111111�10. For Norb�26, we can add

trailing 0’s for the empty orbitals at the edge accordingly,

which we denote as �L̄16
6 �Norb

20 . We compare �L̄16
6 �Norb

20 to the
ground state of our semirealistic model with d=0.7lB, at
which all ground states for Norb=26–30 have M =280, as
shown in Fig. 2. Table I shows the overlap between the glo-
bal ground state ��gs� in different numbers of orbitals and the

six-hole variational wave function �L̄16
6 �Norb

20 . As Norb varies
from 26 to 30, the dimension of the Hilbert space increases
by a factor of about 450, while the overlap still survives at

about 60%. The decrease is largely due to the fact that the
outer edge is no longer sharp as the angular-momentum cut-
off �Norb−1� increases.

In addition, the strength of the confining potential due to
neutralizing background charge also affects, though in a mi-
nor way, the overlap between the �=2 /3 electron ground

state and the variational wave function �L̄16
6 �Norb

20 . Figure 3
shows that for the region in which the total angular momen-
tum of the global ground state is M =280, the overlap for 20
electrons in 26 orbitals decreases from 0.94 to 0.93 as d
increases from 0.67 to 1.2. As the distance d between the
2DEG and the background charge increases, the confining
potential the electrons experience becomes weaker. The elec-
tron wave function can expand, leading to a smaller overlap.
This is consistent with the Norb dependence, in the sense that
the hole-droplet ground state favors stronger confinement.
But since the range of d for a ground state with a certain
number of holes is narrow, we can neglect the 1% change.

An alternative way to compare states is to contrast the
electron-density profiles �though it is possible that two wave
functions with identical density profiles can be orthogonal to
each other�. In Fig. 4, we plot the density profile of a six-
electron Laughlin state and that of the six-hole ground state
obtained by exact diagonalization of a system of 20 electrons
in 30 orbitals at d=0.7lB. To compare, we plot the sum of the
density profiles of the Laughlin state and the six-hole state,
together with the density profile of an IQH state with 26
electrons. It is clear that the density sum is almost the same

TABLE I. Overlaps between 20-electron ground states with M =280 and d=0.7lB and the particle-hole
conjugate of the six-electron Laughlin state obtained from the hard-core Hamiltonian for several different
numbers of orbitals Norb. In the case of d=0.7, the ground state with M =280 is the global ground state for all
cases in Fig. 2. The Hilbert subspace �HS� size for M =280 increases rapidly when Norb increases from 26 to
30 by about 450 times; however the overlap decreases slowly, indicating the robustness of the state.

Norb 26 27 28 29 30

Size of HS 1123 10867 54799 184717 473259

��gs � L̄16
6 �Norb

20 �2 0.9401 0.7868 0.7012 0.6431 0.6011

0.93

0.933

0.936

0.939

0.942

0.7 0.8 0.9 1 1.1 1.2

O
ve

rla
p

d(lB)

|26
20〈−L16

6 �ΨN=20,Norb=26〉|2

FIG. 3. �Color online� Overlap between the 20-electron ground
state in 26 orbitals and the particle-hole conjugate of the six-
electron Laughlin state as a function of d. The decrease in the
overlap indicates that the particle-hole conjugate Laughlin state fa-
vors smaller d, i.e., stronger confinement.
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as the density of the IQH state, except for small oscillations,
which can be attributed to the long-range Coulomb interac-
tion in the semirealistic microscopic model.

V. EDGE EXCITATIONS

The analysis that can further confirm the picture that the
�=2 /3 state is a Laughlin hole-droplet embedded in an IQH
background is the study of edge excitations. In topological
systems such as FQH liquids, edge states have been demon-
strated to be very effective and essential probes of the bulk
topological order in both theoretical calculations and experi-
ments. As shown in Fig. 1, one expects two counterpropagat-
ing edge modes originating from the two edges at 2 /3→1
and 1→0.11–13 In the same spirit as the analysis in Refs. 33
and 34, we can label each low-energy edge excitation by two
sets of occupation numbers �nL�lL�� and �nR�lR�� for the inner
and outer-edge modes with angular momenta lL, lR, and en-
ergies 	L, 	R, respectively. nL�lL� and nR�lR� are non-negative
integers. The angular momentum and energy of an edge ex-
citation, measured relatively from those of the ground state,
are

�M = − �
lL

nL�lL�lL + �
lR

nR�lR�lR, �11�

�E = �
lL

nL�lL�	L�lL� + �
lR

nR�lR�	R�lR� . �12�

For the latter we assumed absence of interactions among the
excitations. The negative sign in Eq. �11� indicates the inner
edge mode is propagating in the opposite direction to the
outer-edge mode.

In Fig. 5, we plot the low-energy spectrum for 20 elec-
trons in 28 orbitals at d=0.5lB, whose global ground state has
M =280. The edge states are labeled by red �dark gray� solid
bars based on the analysis we will discuss in the following
paragraphs. Here we first point out that the inner edge exci-
tations have negative �M and are separated by an energy gap
from other states �presumably bulk states� in each angular-
momentum subspace. The number of these inner edge states
�including the ground state� are 1, 1, 2, 3, and 5 for �M

=0–4, as predicted by the chiral boson edge theory.13 They
have significant overlap with a six-hole Laughlin droplet
with corresponding edge excitations embedded in a 26-
electron IQH background. On the other hand, the outer-edge
excitations ��M �0� have higher excitation energies and are
mixed with bulk states. In particular, for �M =1, the edge
state is the second lowest eigenstate in the M =281 subspace.
The state has a large overlap �62.7%� with the six-hole
Laughlin droplet embedded in the 26-electron IQH state with
an edge excitation at �M =1. Obviously, the outer-edge
mode has a larger velocity than the inner edge mode, consis-
tent with the different charge density associated with the
edge modes.

To identify the inner edge excitations, we compare the
edge spectrum to that of a six-electron system at �=1 /3,
with the neutralizing background charge at the same distance
from the 2DEG. In Fig. 6, we plot side by side the �=1 /3
and the �=2 /3 edge spectra, both with d=0.5lB. The edge
states are labeled by red �dark gray� solid bars. From the
comparison, one clearly sees that the �=2 /3 state and the
�=1 /3 state have similar edge excitations, but along oppo-
site directions. The one-to-one correspondence of the edge
excitations in the two cases can be established by studying
overlaps of the corresponding pairs. Of course, the overlap
that we really calculated is the overlap between the eigen-
state for �=2 /3 and the corresponding particle-hole conju-
gated state for �=1 /3 embedded in the 26-electron IQH
background. To minimize the influence from the momentum
cutoff, we choose six electrons in 22 orbitals with the same
background �d=0.5lB� for 1/3 filling. The results of the over-
lap calculation are summarized in Table II. The overlap be-
comes smaller as we go to higher energy, but remains above
40% up to ��M�=4. Overlaps between other pairs of states
are significantly smaller.

In order to identify edge excitations with positive �M, we
need to consider the IQH edge excitations of the outer edge.

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10

2π
l B

2 ρ(
r)

r/lB

N=20,Norb=30,M=280
N=6 Laughlin state

sum
N=26,ν=1

FIG. 4. �Color online� Density profiles for the six-electron
Laughlin state, the 20-electron ground state in 30 orbitals with M
=280 and d=0.7lB, the sum of them, and the 26-electron IQH state.
The sum is almost the same as the density of IQH.

0

0.04

0.08

0.12

0.16

276 277 278 279 280 281 282

∆E
(e

2 /ε
l B

)

M

N=20,Norb=28,d=0.5

FIG. 5. �Color online� Low-energy spectrum for 20 electrons in
28 orbitals with d=0.5. The inner- and outer-edge states are labeled
by red �dark gray� solid bars and the simplest combination of the
two is labeled by a black solid bar �the fourth lowest level at M
=280�. Its energy �0.1049� is roughly the sum of the two lowest
excitation energies for the two modes: 0.028 07�inner�
+0.076 87�outer�. This state has a moderately large overlap
�0.3959� with the particle-hole conjugate of a six-electron Laughlin
state with �M =1 edge excitation and embedded in the IQH edge

state with �M =1: �L̄17
6 ��M =1� . . .1101�.
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A 26-electron IQH ground state in 28 orbitals can be repre-
sented by occupation numbers �11. . .11100�, with 26 con-
secutive 1’s followed by two 0’s. So after adding a six-hole
Laughlin hole droplet, we denote the ground state as

�L̄16
6 . . .11100� for convenience, although the many-body

variational state cannot be written as a single occupation
number string �i.e., a Slater determinant�. In the same spirit,
we can construct and denote variational wave functions with

IQH edge excitations as �L̄16
6 . . .11010� for �M =1 and

�L̄16
6 . . .11001� and �L̄16

6 . . .10110� for �M =2 in order to em-
phasize the excitation at the outer edge. We calculate the

overlap between the variational wave function �L̄16
6 . . .11010�

and the states in M =281 subspace. The largest we find is the

second state, ��M=2812
� L̄16

6 . . .11010��2=0.6272, which we
identify as the outer-edge excitation. Similarly for �M =2,
we identify the 5th state, which has

��M=2825
� L̄16

6 . . .10110��2=0.1896, and the 17th state, which

has ��M=28217
� L̄16

6 . . .11001��2=0.1794, as edge excitations.
We note the overlap already becomes small for �M =2, in-
dicating significant mixing between the edge states and bulk
states. This is not surprising since for the small system we
consider, there is no gap protecting the edge states.

Equations �11� and �12� suggest that there are also com-
posite excitations that are combinations of these two coun-
terpropagating edge modes. The simplest one is the combi-
nation of the edge states with �M =−1 and �M =1, which
resides in the M =280 subspace. Intuitively, we can construct
a variational wave function by particle-hole conjugating a
six-electron Laughlin state with the �M =1 edge excitation
and embedding it in the IQH state with �M =1, which we

denote as �L̄17
6 ��M =1� . . .11010�. We find that the fourth

state in the M =280 subspace has the largest overlap �about

0.3959� with �L̄17
6 ��M =1� . . .11010�; meanwhile, its excita-

tion energy ��E=0.1049� is roughly the sum of the excita-
tion energy of the �M =1 edge state ��E=0.076 87� for the
outer edge and the �M =−1 state ��E=0.02807� for the in-
ner edge, confirming Eq. �12�.

Figure 7 compares the dispersion curves and correspond-
ing edge velocities for both the inner edge mode of the 20-
electron droplet at �=2 /3 and the edge mode of a six-
electron Laughlin droplet at �=1 /3 with different
background confinement. The velocity of an edge mode is
defined as v= �d	�k� /dk�. The edge excitation with angular
momentum �M measured from the ground state is related to
the edge linear momentum k=�M /R, where R=�3NelB is
the radius of the N-electron FQH droplet at �=2 /3 and R
=�6NelB for �=1 /3. Here we smear the difference of the
radius between the inner and outer edges of �=2 /3. We find
that the velocity of the electron liquid ve is larger than the
corresponding velocity vh for the hole droplet of the �
=2 /3 FQH state at small d �strong confinement�, while ve is
smaller than vh at large d �weak confinement�. The crossing
happens at around d=0.82lB. At d=0.5lB, the velocity of the
electron edge is about 0.25e2 / �	��, while the velocity of the
hole edge mode is about 0.22e2 / �	��. As d increases, ve
decreases �roughly linearly� because the edge confinement is
weaker and electrons tend to move out. However, vh in-
creases linearly with d. Therefore, the symmetry correspon-
dence between the electron droplet and the hole droplet is
not exact in the presence of edge confinement.

Meanwhile, in Fig. 5, we pointed out that the second-
lowest eigenstate in the M =281 momentum subspace is the
outer-edge state at d=0.5lB. We can expect that the excitation
energy of the edge state decreases with d and may drop be-
low that of the lowest-energy state �presumably a bulk state�.
This is indeed the case, as illustrated in Fig. 8. When increas-
ing the distance d to the neutralizing charge background, we

TABLE II. The overlaps between the particle-hole conjugated six-electron edge states �in 22 orbitals with
d=0.5lB; Fig. 6�a�� and the 20-electron inner edge states �in 28 orbitals with d=0.5lB; Fig. 6�b��. The
subscript n �m� means this is the overlap between the nth state in the former subspace and the mth state in
the later subspace.

1 2 3 4 5

��M=45 ��M=280��2 0.75271�1�

��M=46 ��M=279��2 0.66151�1�

��M=47 ��M=278��2 0.70031�1� 0.58142�2�

��M=48 ��M=277��2 0.70981�1� 0.61472�2� 0.50833�3�

��M=49 ��M=276��2 0.71801�1� 0.62382�2� 0.60003�3� 0.49995�4� 0.413010�5�
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FIG. 6. �Color online� Comparison of the low-energy excitation
spectrum of the �=1 /3, �a� six-electron Laughlin edge states �six
electrons in 22 orbitals with Coulomb interaction, d=0.5lB� and �b�
�=2 /3, 6-hole Laughlin edge states �20 electrons in 28 orbitals, d
=0.5lB�. The edge states are labeled by red �dark gray� solid bars.
The overlaps between these edge states are shown in Table II.
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find an anticrossing behavior of the lowest two eigenstates as
their energy difference �E=E2−E1 shows a minimum at the
crossing scale dc=0.84lB. Overlap calculations reveal that
below this dc, the lowest-energy state has a smaller overlap
with the corresponding variational wave function of the edge

state ��L̄16
6 . . .11010�� than the second lowest state. On the

contrary, above dc, the lowest-energy state has a larger over-

lap with the variational edge state, which can be regarded as
the ground state with an �M =1 outer-edge IQH excitation.

Figure 9�a� shows the edge dispersion curves for both the
inner and the outer-edge modes for different background
confinement. Similar to the edge mode of the electron
Laughlin state, the velocity of the outer-edge mode of the
�=2 /3 FQH droplet decreases linearly as d increases, as
plotted in Fig. 9�b�. At d=0.5lB, the velocity of the outer-
edge mode is about 0.596e2 / �	��, slightly smaller than three
times the inner edge velocity. In this case the small deviation
from three suggests the two edges may be weakly coupled.

We conclude the section by pointing out that we can iden-
tify two edge modes for a �=2 /3 FQH droplet, propagating
along opposite directions. The outer-edge velocity is larger
than the inner edge velocity. The outer and inner edge modes
originate from electron and hole droplets, respectively, and
show opposite dependence on the strength of the edge con-
fining potential, which breaks the particle-hole symmetry.

VI. PARTICLE-HOLE TRANSFORMATION

The Laughlin state is the exact zero-energy state of a spe-
cial two-body Hamiltonian with hard-core interaction. In this
section we use particle-hole transformation to construct
Hamiltonians that make the hole Laughlin states �which we
used as variational ground states in previous sections� exact
ground states. As we are going to show below, such Hamil-
tonians include not only the same hard-core interaction but
also an additional one-body term in the electron basis.

We start by considering a generic two-body Hamiltonian
in terms of hole operators,
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FIG. 7. �Color online� �a� The dispersion relation of the inner
edge mode for 20 electrons in 28 orbitals at �=2 /3 and �b� the edge
mode of a 6-electron Laughlin droplet in 20 orbitals at �=1 /3 with
different background confinement potentials. The evolutions of the
edge velocities as a function of d are plotted in �c�. It can be seen
that the velocity of the counterpropagating edge mode in the hole
Laughlin state crosses that of the electron Laughlin state at around
d=0.82lB, and the velocity of the electron Laughlin state has an
opposite response to the change in the background confinement to
the hole Laughlin state.
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FIG. 9. �Color online� The dispersion curves of a �=2 /3 FQH
droplet with 20 electrons in 28 orbitals �a� for both the inner and
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state, the velocities of the outer-edge mode decrease linearly as a
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GROUND STATE AND EDGE EXCITATIONS OF A… PHYSICAL REVIEW B 78, 235315 �2008�

235315-7



Hh =
1

2 �
�mi=0�

Norb−1

Vm1m2m3m4
hm1

+ hm2

+ hm4
hm3

, �13�

where the hole operators h+ and h are related to electron
operators: h+=c and h=c+. It is straightforward to express
the same Hamiltonian in terms of electron operators:

Hh =
1

2 �
�mi=0�

Norb−1

Vm1m2m3m4
cm4

+ cm3

+ cm1
cm2

− �
m

Ūmcm
+ cm + const,

�14�

where

Ūm = �
n

�Vnmnm − Vnmmn� �15�

is the Hartree-Fock self-energy of the state m when all the
Norb orbitals are occupied by electrons. Thus, in the electron
basis we get the same two-body interaction plus a one-body
potential, which is attractive if the two-body potential is re-
pulsive.

From now on we focus on the specific short-range �hard-
core� interaction that corresponds to Haldane pseudopoten-
tial Vm=
1,m for Hh. After diagonalizing the Hamiltonian Hh
with N=20 electrons in Norb=28, we obtain the energy spec-
trum in Fig. 10. It is worth pointing out that since there is no
edge confinement other than the momentum cutoff due to the
choice of Norb, we have Nh=Norb−N=8 holes in the system.
Not surprisingly, the largest angular momentum of the de-
generate ground states is M0=294, as expected from Eq. �6�,
with NI=Norb=28 and Ne=20. This is the densest ground-
state configuration for holes and is thus incompressible. For
�M =M −M0=−1,−2, . . . ,−5, we find that the ground-state
degeneracy in each subspace is n��M�=1, 2, 3, 5, and 7,
respectively. This is precisely the number expected for the
Laughlin droplet �except for this case, the momentum is
negative�, as generated by

�
�M

n��M�q�M = 	
m=1

�
1

1 − q−m . �16�

In the spirit of Refs. 33 and 34, a mixed Hamiltonian that
contains both the Coulomb Hamiltonian HC used in Secs. III,
IV, and V and the above hard-core Hamiltonian Hh
parametrized by � is considered,

H = �Hh + �1 − ��HC. �17�

The idea here is that the hard-core Hamiltonian Hh raises the
energy of bulk excitations while having little effect on the
edges states;, thus, its presence helps separate the two ener-
getically. Figure 11 shows the energy spectrum for 20 elec-
trons in 28 orbitals in the pure Coulomb case ��=0� and a
mixed case ��=0.5�. Although the ground state of Hh for 20
electrons in 28 orbitals is the eight-hole Laughlin state, for
the mixed Hamiltonian above we obtain a different ground
state with the same quantum number as the six-hole Laughlin
state �M =280�. This is because the neutralizing background
charge at d=0.9 serves as a repulsive potential to the holes
that pushes two holes to the outer edge. It is clear that edge
excitations show up at lower energies for the case �=0.5. In
particular, overlap calculations indicate that in the case of
pure Coulomb interaction with �=0, the third state in M
=280 subspace is the simplest combination state which has

the largest overlap �0.194� with �L̄17
6 ��M =1� . . .11010�,

while in the case of the mixed Hamiltonian with �=0.5, it is
the second state in M =280 subspace that has the largest

overlap �0.296� with �L̄17
6 ��M =1� . . .11010�. Therefore, the

mixing of the hard-core Hamiltonian indeed has the effect of
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electrons. The first 50 energy levels are plotted for each M. The
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FIG. 11. �Color online� �a� The energy spectrum for the pure
Coulomb Hamiltonian with �=0 and �b� a mixed Hamiltonian with
�=0.5. When �=0 the overlaps between the outer-edge states �and
ground state� and their corresponding conjugated states

are: ��M=2801
� L̄16

6 �26
20�2=0.684, ��M=2811

� L̄16
6 . . .11010��2=0.385,

��M=2823
� L̄16

6 . . .10110��2=0.133, and ��M=28215
� L̄16

6 . . .11001��2

=0.158; the overlap for the simplest linear combination state is

��M=2803
� L̄17

6 ��M =1� . . .11010��2=0.194. In the case of a mixed

Hamiltonian with �=0.5, they are ��M=2801
� L̄16

6 �26
20�2=0.66,

��M=2811
� L̄16

6 . . .11010��2=0.539, ��M=2822
� L̄16

6 . . .10110��2

=0.218, ��M=28210
� L̄16

6 . . .11001��2=0.107, and ��M=2802
� L̄17

6 ��M
=1� . . .11010��2=0.296.
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separating the band of edge states from the bulk states.

VII. LAYER THICKNESS

One improvement in the semirealistic model is to consider
the effect of finite electron layer thickness. In real experi-
mental samples, quasi-two-dimensional electrons are con-
fined in the GaAs quantum well, whose width can be as large
as 30 nm or a few magnetic lengths. Since the vertical mo-
tion of electrons is suppressed at low temperatures, the quasi-
2DEG can be approximated, to the lowest order, by an ideal
2DEG located at the peak of the wave function in the per-
pendicular direction. The finite width softens the repulsion
between electrons and, thus, together with other factors �like
higher Landau level�, may help stabilize certain fragile FQH
states.38,39 In this section, we briefly discuss the effects of the
2DEG layer thickness on the velocities of �=2 /3 edge
modes. We use the Fang-Howard40,41 variational wave func-
tion,

Z0�z� = 2�2b�−3/2ze−z/2b, �18�

to model the electron layer thickness effect, where b is a
measure of the well thickness. We obtain the same qualita-
tive behavior for an infinite quantum well potential.

We can integrate the Fang-Howard wave function to ob-
tain the renormalized Coulomb interaction in Fourier space

vFH�k� =
e2

	

1

8k

3�kb�2 + 9kb + 8

�kb + 1�3 . �19�

In Fig. 12, we show the edge dispersion curves for both the
inner and the outer-edge modes for a �=2 /3 FQH droplet of
20 electrons with different layer thicknesses for d=0.9. The
ground-state angular momentum is again M =280, consistent
with the six-hole Laughlin droplet picture. We find that the
velocities of both edge modes are reduced by increasing
layer thickness, as expected. This is in contrast to the effects
of the confining potential, which modifies edge velocities in
an opposite way.

VIII. QUASIPARTICLE

In this section, we demonstrate that both one quasihole
and one quasiparticle can be excited at the center of the FQH
droplet with an additional short-range impurity potential.
This section is a natural generalization of similar works by
some of the authors for the Laughlin case at �=1 /3 �Ref. 35�
and for the Moore-Read Pfaffian case.33,34

We follow the previous work35 by using a Gaussian im-
purity potential HW=Wg�mexp�−m2 /2s2�cm

+ cm with a finite
width s=2lB to excite and trap either a quasihole or a quasi-
particle. We consider a system of 20 electrons at �=2 /3,
whose ground-state angular momentum is M =280 for d
=0.5lB. At Wg=0.2 and Wg=−0.2, the global ground state
resides in the angular-momentum subspaces at M =286 and
M =274, respectively. The change in the ground-state angular
momentum M by �6 suggests that we have induced a charge
�e� /3 quasihole or a charge −�e� /3 quasiparticle at the center
of the six-hole droplet. The density plot for the electron
ground state in Fig. 13 confirms the charge depletion and
accumulation in the corresponding cases. The increase in the
electron ground-state angular momentum means a corre-
sponding decrease in the angular momentum of the hole
droplet, suggesting a quasiparticle excitation for the hole
droplet and, thus, a quasihole excitation for the �=2 /3 elec-
tron ground state, as plotted in Figs. 13�c� and 13�d�. The
decrease in angular momentum, on the other hand, suggests a
quasiparticle excitation, as plotted in Figs. 13�e� and 13�f�.
These excitations are localized at the origin, where we apply
the impurity potential, and their presence has no effect on the
edge excitation spectrum since these are Abelian anyons.
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FIG. 12. �Color online� The dispersion curves for both the inner-
edge and the outer-edge modes for 20 electrons in 28 orbitals with
d=0.9lB and different layer thicknesses. The layer thickness softens
the interaction between the electrons and reduces the edge mode
velocities.
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Roughly speaking, the quasihole and quasiparticle excita-
tions induce the same density perturbation on the ground
state, except for the opposite signs, suggesting a
quasiparticle-quasihole symmetry.

IX. CONCLUDING REMARKS

To summarize, we study the ground states, edge, and bulk
excitations of �=2 /3 fractional quantum Hall condensates in
a semirealistic microscopic model. We find strong numerical
evidence that a �=2 /3 droplet can be regarded as a �h
=1 /3 Laughlin hole droplet embedded in a larger �I=1 inte-
ger quantum Hall droplet. In particular, we find two counter-
propagating edge modes, which are associated with the inner
edge �the edge of the hole droplet� and the outer edge �the
edge of the integer quantum Hall edge�. The inner edge
mode is well separated from bulk excitations and resembles
the edge of a �=1 /3 electron droplet, except that they propa-
gate in opposite directions and respond oppositely to the
edge confining potential, which explicitly breaks the particle-
hole symmetry. The outer-edge states have higher energy and
mix with bulk excitations due to the computational limit on
the Hilbert-space dimension. The �=2 /3 quantum Hall drop-
let also has the same �e /3 quasiparticle and quasihole exci-
tation as a �=1 /3 Laughlin droplet. These features are robust
in the presence of finite electron layer thickness, which soft-
ens the Coulomb interaction between electrons.

One of the major advantages of the disk geometry is that
we can identify edge modes and determine the velocities of
the edge modes. We have previously applied the same
method to �=5 /2 fractional quantum Hall systems and found
significant differences in charge and neutral velocities,34

which leads to quite different temperature regimes in which
charge e /4 and charge e /2 quasiparticles can be observed in
interference experiments.27,42 Similarly, based on comparison
with the edge excitations in the �=1 /3 Laughlin case and in
the �=1 integer case, we are able to resolve the edge exci-
tations of the �=2 /3 case. It is interesting to point out that
the outer-edge velocity is roughly three times that of the
inner edge mode velocity, which is about the same as the
edge mode velocity of the �=1 /3 Laughlin liquid with the
same Coulomb interaction and a similar confining potential
strength due to the neutralizing charge background �Fig.
7�c��. In general, edge mode velocities are nonuniversal, de-
pending on details of electron-electron interaction and con-
fining potential. For �=2 /3, at which there are two counter-
propagating edge modes, the velocities further depend on the
coupling between the two edge modes affected by interac-
tions and impurities,13,15 for example. The fact that we are
observing a relatively robust ratio ��3� of the outer-edge
mode velocity to the inner one �consistent with their density

changes� suggests that at the length scale of our finite-size
study, the velocities are dominated by the Coulomb interac-
tion strength determined by the electron-density change as-
sociated with each mode and that the two edge modes are
very weakly coupled. We note that, in the thermodynamic
limit, the long-range nature of the Coulomb interaction is
expected to force the two modes to reorganize into a charge
mode and a neutral mode, with the charge mode velocity
logarithmically divergent while the neutral mode velocity re-
mains finite in the long wave length limit. The system size of
our study is too small to see this trend.

Another feature of the current calculation is that we con-
sider a semirealistic confining potential arising from the neu-
tralizing background charge. This, together with long-range
interaction between electrons, allows us to compare the en-
ergetics of competing states and discuss the qualitative de-
pendence of eigenenergies and edge mode velocities on the
confining potential. This is an extremely interesting subject,
especially when we have the �=5 /2 quantum Hall systems
in mind. In that case, there are at least two competing can-
didates for the ground states, the Moore-Read Pfaffian state
and its particle-hole conjugate, the anti-Pfaffian state. They
are exactly degenerate, if we neglect the particle-hole
symmetry-breaking terms, such as the three-body interaction
due to Landau-level mixing. As demonstrated in this study,
the confining potential is also a relevant symmetry-breaking
term, which leads to an opposite dependence of the edge
mode velocities on this potential. It has been predicted34 that
the anti-Pfaffian state is favored in weak confinement
�smooth edge� while the Moore-Read Pfaffian state is fa-
vored in strong confinement �sharp edge�. It is also interest-
ing to point out that for �=2 /3 the dependence of the edge
mode velocity of the inner edge on the confining potential is
significantly weaker than that of the outer edge �Fig. 9�, sug-
gesting a screening effect by the outer edge on the inner edge
to the change in the confining potential.
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